• Enhancement of Folate Receptor α Expression in Tumor Cells Through the Glucocorticoid Receptor: A Promising Means to Improved Tumor Detection and Targeting

     

    Enhancement of Folate Receptor α Expression in Tumor Cells Through the Glucocorticoid Receptor: A Promising Means to Improved Tumor Detection and Targeting

    Abstract

    The utility of the folate receptor (FR) type α, in a broad range of targeted therapies and as a diagnostic serum marker in cancer, is confounded by its variable tumor expression levels. FR-α, its mRNA and its promoter activity were coordinately up-regulated by the glucocorticoid receptor (GR) agonist, dexamethasone. Optimal promoter activation which occurred at <50 nmol/L dexamethasone was inhibited by the GR antagonist, RU486, and was enhanced by coactivators, supporting GR mediation of the dexamethasone effect. The dexamethasone response of the FR-α promoter progressed even after dexamethasone was withdrawn, but this delayed effect required prior de novo protein synthesis indicating an indirect regulation. The dexamethasone effect was mediated by the G/C-rich (Sp1 binding) element in the core P4 promoter and was optimal in the proper initiator context without associated changes in the complement of major Sp family proteins. Histone deacetylase (HDAC) inhibitors potentiated dexamethasone induction of FR-α independent of changes in GR levels. Dexamethasone/HDAC inhibitor treatment did not cause de novo FR-α expression in a variety of receptor-negative cells. In a murine HeLa cell tumor xenograft model, dexamethasone treatment increased both tumor-associated and serum FR-α. The results support the concept of increasing FR-α expression selectively in the receptor-positive tumors by brief treatment with a nontoxic dose of a GR agonist, alone or in combination with a well-tolerated HDAC inhibitor, to increase the efficacy of various FR-α–dependent therapeutic and diagnostic applications. They also offer a new paradigm for cancer diagnosis and combination therapy that includes altering a marker or a target protein expression using general transcription modulators. https://cancerres.aacrjournals.org/content/65/10/4431


    oncotarget removed from pubmed Misha Blagosklonny
    Mikhail (Misha) V. Blagosklonny graduated with an MD and PhD from First Pavlov State Medical University of St. Petersburg, Russia. Dr. Mikhail V. Blagosklonny has then immigrated to the United States, where he received the prestigious Fogarty Fellowship from the National Institutes of Health. During his fellowship in Leonard Neckers’ lab at the National Cancer Institute (NCI), he was a co-author of 18 publications on various biomedical themes, including targeting HSP90, p53, Bcl2, Erb2, and Raf-1. He also was the last author for a clinical phase I/II trial article. 
    After authoring seven papers during a brief yet productive senior research fellowship in the El-Deiry Cancer Research Lab at the University of Pennsylvania, Dr. Blagosklonny returned to NCI to work with Tito Fojo. Together, they published 26 papers. Moreover, Dr. Blagosklonny published many of experimental research papers and theoretical papers as sole author. The abovementioned sole-author articles discussed two crucial topics. The first of these discussed selectively killing cancer cells with deregulated cell cycle or drug resistance via verifying their resistance. The outcomes and underlying notion were so revolutionary that they were incorrectly cited by other scientists as “reversal of resistance,” even though the publication was titled, “Exploiting of drug resistance instead of its reversal.” One big supporter of this concept was the world-famous scientist Arthur Pardee, with whom Dr. Blagosklonny co-authored a joint publication in 2001.
    The second theme throughout Dr. Blagosklonny’s sole-author articles is a research method to develop knowledge by bringing several facts together from seemingly irrelevant areas. This results in new notions with testable forecasts, which in turn can be “tested” via analyzing the literature further. Likewise, the concept was co-authored by Arthur Pardee in a 2002 article in Nature. The first success of the new research methodology was the description of the feedback regulation of p53, as confirmed by the discovery of mdm2/p53 loop; and the explanation why mutant p53 is always overexpressed, published in 1997. The most important result revealed by Dr. Blagosklonny’s research methodology is the hyperfunction (or quasi-programmed) theory of aging and the revelation of rapamycin as an exclusively well-tolerated anti-aging drug, published in 2006. As mentioned in Scientific American, Michael Hall, who discovered mTOR in 1991, gives Dr. Blagosklonny credit for “connecting dots that others can’t even see.”
    In 2002, Dr. Blagosklonny became associate professor of medicine at New York Medical College. He agreed to accept responsibilities as a senior scientist at Ordway Research Institute in Albany, New York, in 2005, before receiving another position at Roswell Park Cancer Institute as professor of oncology in 2009.
    Since coming to Roswell Park Comprehensive Cancer Center in 2009, Dr. Blagosklonny has studied the prevention of cancer (an age-related disease) via stopping organism aging - in other words, “preventing cancer via staying young.” His laboratory closely worked together with Andrei Gudkov’s and conducted research on the suppression of cellular senescence, namely suppression of cellular conversion from healthy quiescence to permanent senescence. This led to the discovery of additional anti-aging medicines beyond rapamycin. The cell culture studies were complemented by studies in mice, including several models like normal and aging mice, p53-deficient mice, and mice on a high-fat diet.
    Dr. Blagosklonny has also published extensively on the stoppage of cellular senescence via rapamycin and other mTOR inhibitors, life extension and cancer stoppage in mice, and combinations of anti-aging medicines to be taken by humans. A rapamycin-based combination of seven clinically available medications has been named the “Koschei Formula” and is now used for the treatment of aging in patients at the Alan Green Clinic in Little Neck, New York. 

  • Commentaires

    Aucun commentaire pour le moment

    Suivre le flux RSS des commentaires


    Ajouter un commentaire

    Nom / Pseudo :

    E-mail (facultatif) :

    Site Web (facultatif) :

    Commentaire :